RSSAll Entries Tagged With: "NPFA 99"

I am barely breathing: Gas Equipment is on TJC’s Radar!

The past couple of weeks, I’ve been fielding some questions relative to some new performance elements under the Medical Equipment Management standard that covers inspection, testing, and maintenance activities. Apparently, folks have been receiving some sort of notifications from profession groups (in this case, it seems to be the respiratory therapy folks that are being targeted with the notifications.

At any rate, I think we can say (pretty much for all time) that any changes to the standards/EPs is likely to result in (at the very least) consternation and a potential uptick in findings related to said standards/EPs. At least some of the questioning is focused on a certain element of reliance on vendors (and we know how that can go). So, while I do believe that for the most part folks are going to be OK with the changes, I also recognize that a little conversation couldn’t possibly hurt…

In case you’ve not yet encountered the new stuff, what we have is this. For equipment listed for use in oxygen-enriched atmospheres (more on that in a moment), the following must be “clearly and permanently” labeled on the equipment (permanently meaning the labeling withstands cleaning and disinfecting—how many labels are like that?): 1) Oxygen-metering equipment, pressure-reducing regulators, humidifiers, and nebulizers are labeled with name of manufacturer or supplier; 2) Oxygen-metering equipment and pressure reducing regulators are labeled “OXYGEN–USE NO OIL”; 3) Labels on flowmeters, pressure-reducing regulators, and oxygen-dispensing apparatuses designate the gases for which they are intended; and 4) Cylinders and containers are labeled in accordance with Compressed Gas Association (CGA) C-7.

The source material for these “new” requirements is in NFPA 99-2012 11.5.3.1; and please note that color coding is not to be utilized as the primary method of determining cylinder or container contents; I suppose when you come right down to it, cylinders are no different than any other secondary container when it comes to identifying the contents.

The follow-up question becomes one of what constitutes an “oxygen-enriched atmosphere”; in the definitions section of NFPA 99-2012, section 3.3.131 gives us this: “3.3.131 Oxygen-Enriched Atmosphere (OEA). For the purposes of this code, an atmosphere in which the concentration of oxygen exceeds 23.5 percent by volume. (HYP)” Now, you may notice the little tag at the end of this definition, which gives us some indication of where we need to be particularly mindful, with “HYP” referring to hyperbaric therapy. I know there are more hyperbaric therapy locations than there used to be, but some folks aren’t going to have to worry too much about this. But in the interest of a complete picture, I looked over the materials in the NFPA 99 Handbook and I think the information there further narrows down the field of concern:

“The normal percentage of oxygen in air is 20.9 percent, commonly expressed as 21 percent. The value of 23.5 percent reflects an error factor of ± 2.5 percent. Such a margin of error is necessary because of the imprecision of gas measurement devices and the practicality of reconstituting air from gaseous nitrogen and oxygen. Hyperbaric chambers located in areas of potential atmospheric pollution cannot be pressurized with air drawn from the ambient atmosphere. Such chambers are supplied by ‘air’ prepared by mixing one volume of oxygen with four volumes of nitrogen. It is impractical to reconstitute large volumes of air with tolerances closer than 21 percent ± 2.5 percent. The code does not intend to imply that the use of compressed air cylinders in normal atmospheric areas (i.e., outside hyperbaric chambers) would create an oxygen-enriched atmosphere. The compressed air expands as it leaves the cylinder, drops to normal atmospheric pressure, and is not oxygen-enriched. This definition varies slightly from the one appearing in NFPA 53, Recommended Practice on Materials, Equipment, and Systems Used in Oxygen-Enriched Atmospheres [12], which states that the concentration of oxygen in the atmosphere exceeds 21 percent by volume or its partial pressure exceeds 21.3 kPa (160 torr). The scope of the definition is limited to the way the term is used throughout NFPA 99. The definition is independent of the atmospheric pressure of the area and is based solely on the percentage of oxygen. In defining the term, the issue of environments, such as a hyperbaric chamber, where the atmospheric pressure can vary, was taken into consideration. Under normal atmospheric conditions, oxygen concentrations above 23.5 percent will increase the fire hazard level. Different atmospheric conditions (e.g., pressure) or the presence of gaseous diluents, however, can actually increase or decrease the fire hazard level even if, by definition, an oxygen-enriched atmosphere exists. An oxygen-enriched atmosphere, in and of itself, does not always mean an increased fire hazard exists.”

At the moment, given the definition above, I can’t think of anything other than hyperbaric environments that would be covered under the new requirements, but I’ll keep my ear to the ground and pass on any information that seems worth sharing; beyond that, I would do an analysis of equipment for hyperbaric therapy and go from there.

When we consider how we’re going to make this happen (if it isn’t already; I’m thinking/hoping that the gas equipment suppliers are paying attention to the new rules), at the end of the day, compliance with Joint Commission standards and performance elements rests solely in the hands of the organization. Again, presumably/hopefully/expectantly, the vendors from whom you obtain medical gases, equipment, etc., will be familiar with the requirements as they are based on the currently adopted/approved version of NFPA 99, as well as the requirements of the Compressed Gas Association (CGA). I would reach out to them to see what their plans are for compliance, remembering that (at least for the moment) the new requirements apply only to the gases and equipment used in oxygen-enriched atmospheres. I suspect that there will come a time when all related equipment, etc., is similarly labeled, but you may find that in the short term that you will have to keep a close eye on equipment used in surgery, hyperbaric oxygen, etc., to ensure that everything is as it should be. The general concept of not using oil on oxygen equipment is not new, so it may be that this is not going to be as big a struggle as might first appear. I’d be interested in finding out what you learn from the vendors you’re using, just to establish a baseline for advising folks.

 

Can we count painful survey findings and new requirements as blessings?

First off, please accept my bestest wishes to you and yours for a most joyous and restful (or as restful as you want it to be) Thanksgiving holiday.

To paraphrase a certain musical ensemble, what a long, strange compliance year it’s been. Hopefully, 2016 will head off into the realm of history with a whimper (I think we’ve experienced enough “bangs” to take us well into 2017 and beyond). And so, a little casserole of safety stuff to tide you over ’til next week. First up, some risk assessment deliciousness, courtesy of NFPA 99.

I had intended to discuss this back a few weeks, but there has been a lot to discuss these past few weeks. At any rate, I was able to get a look at the CMS update portion of the Executive Briefings presentation and it appears that there was some discussion relating to the practical application of how a space is used to determine the risk category for the equipment and/or systems used to support that space. My sense of this is that it’s not so much the space itself as it is, but rather what processes, etc., exist within the space you are evaluating, using the definitions from NFPA 99. So, the methodology focuses on an analysis of facility systems and equipment based on the risks associated with failures of those systems:

Category 1—Facility systems in which failure of such equipment or system is likely to cause major injury or death of patients or caregivers

Category 2—Facility systems in which failure of such equipment or system is likely to cause minor injury to patients or caregivers

Category 3—Facility systems in which failure of such equipment is not likely to cause injury to patients or caregivers

Category 4—Facility systems in which failure of such equipment would have no impact on patient care.

 

So, moving to the definitions in NFPA 99, you sort the above concepts based on how the space is used:

  • Facility systems and equipment for critical care rooms would be Category 1
  • Facility systems and equipment for general care rooms would be Category 2
  • Facility systems and equipment for basic care rooms would be Category 3
  • Facility systems and equipment for support rooms would be Category 4

Each of the chapters in NFPA 99 (gas and vacuum systems, gas equipment, electrical systems, HVAC, etc.) have provisions for the different categories, as applicable, so it appears that the expectation (at least as it was presented at Exec Briefings) is that the organization of the facilities systems and equipment would reflect this methodology. To be honest, I think this may be more of an issue with re-packaging how things are equipped and maintained; maybe including the category designation on work orders, etc. I don’t know that this is going to extend to TJC’s activities, though with the bad marks it received on its CMS report card, it seems unlikely that TJC will become more reasonable…time, as they say, will tell.

Another potential complication for survey year 2017 (I’m pretty confident of this, but not yet certain about the timeline for implementation) is a broadening of the Evidence of Standards Compliance (ESC) process to include at least two more considerations. At the moment, the ESC process requires a response to the following categories: Who (is responsible for the correction); What (was done to correct the deficiency); When (the corrective action was completed); How (the corrective action was implemented and will be sustained), and Measure of Success (for those pesky “C” performance elements—to which we will bid a hearty “adieu” on January 1, 2017). I think we’re all pretty familiar with that part of the process (I can’t imagine that anyone’s had a survey with no findings in the physical environment, though I suppose the infamous “bell” curve might dictate otherwise), but there is indication that with the removal of the Measure of Success category, we will have two additional elements to document within the framework/context of the corrective action: Leadership Involvement and Preventive Analysis. At the moment, it appears that the sequence will look something like this:

Who:

Leadership Involvement:

What:

When:

How:

Preventive Analysis:

I think being able to account for leadership involvement is a pretty straightforward response (I think probably the best way to frame this would be to identify the boss of whoever the “who” would be; and perhaps that boss’ boss, depending on the circumstance), but I suspect that the Preventive Analysis portion of the response could get quite complicated. As near as I can tell, it would be an amalgam of the root cause that resulted in the finding and the strategy for preventing future deficiencies, although minimizing the risk of recurrence might be a more useful viewpoint—as I like to tell folks, it’s the easiest thing in the world to fix something and the among the most difficult things to keep that something fixed. Hopefully, this will end up being no more than a little more water under the bridge, but I guess as long as findings in the physical environment remain a focus, the sustainment of corrective actions will be part of the conversation.

And on that note, I bid you a Thanksgiving to eclipse all yet experienced: gobble, gobble!